ezv technologies

CCD57-10 AIMO Backthinned Compact Pack High Performance CCD Sensor

FEATURES

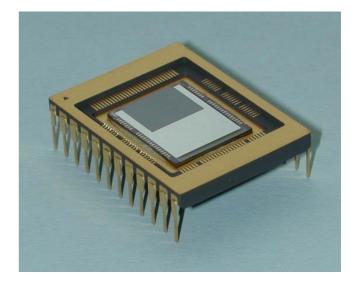
- 512 by 512 Usable Pixels
- Image Area 6.7 x 6.7 mm
- Back Illuminated Format
- Frame Transfer Operation
- 13 μm Square Pixels
- Symmetrical Anti-static Gate Protection
- Very Low Noise Output Amplifiers
- Gated Dump Drain on Output Register
- 100% Active Area
- Advanced Inverted Mode Operation (AIMO)
- New Compact Footprint Package

APPLICATIONS

- Spectroscopy
- Scientific Imaging
- Star Tracking
- Medical Imaging

INTRODUCTION

This version of the CCD57 family of sensors has frame transfer architecture. Back illumination technology, in combination with extremely low noise amplifiers, makes the device well suited to the most demanding scientific applications. To improve the sensitivity further, the CCD is manufactured without antiblooming structures.


This device has a single serial output register. Separate charge detection circuits are incorporated at each end of the register, which is split so that a line of charge can be transferred to either output, or split between the two.

The register is provided with a drain and control gate along the outer edge of the channel for charge dump purposes.

The sensor is made using e2v technologies' Advanced Inverted Mode process to minimise dark current, allowing the device to be operated with extended integration periods and minimal cooling.

Other variants of the CCD57-10 available are front illuminated format and non-inverted mode. In common with all e2v technologies CCD Sensors, the CCD57-10 is also available with a fibre-optic window or taper, or with a phosphor coating.

Designers are advised to consult e2v technologies should they be considering using CCD sensors in abnormal environments or if they require customised packaging.

TYPICAL PERFORMANCE

Maximum readout frequency				3	MHz
Output responsivity				6	µV/e [−]
Peak signal				100	ke ⁻ /pixel
Dynamic range (at 20 kHz) .		~33	3 33	33:1	
Spectral range		200	- 1	100	nm
Readout noise (at 20 kHz) .				2.0	e ⁻ rms

GENERAL DATA

Format

Image area									6	6.656	x 6.65	6 mm
Total elements (H)										536		
(∨)										528		
Active pixels (H)										512		
(∨)										512		
Storage area:												
Total elements (H)										536		
(∨)										528		
Pixel size									13	x 13		μm
	Additional pixels are provided in the image area and output								output			
register for over-scanning purposes.												
Number of output	am	plif	iers	5			•					. 2
Weight (approx, no	o w	/ind	low)	•			·	·	6		g

Package

Package size							2	2.6	х	29.9) mm
Number of pins .					•						24
Inter-pin spacing										2.54	l mm
Window material				qua	artz	2 0	r re	emo	ova	able	glass
Туре					•	(cera	am	ic	DIL	array

e2v technologies limited, Waterhouse Lane, Chelmsford, Essex CM1 2QU England Telephone: +44 (0)1245 493493 Facsimile: +44 (0)1245 492492 e-mail: enquiries@e2vtechnologies.com Internet: www.e2vtechnologies.com Holding Company: e2v holdings limited

e2v technologies inc. 4 Westchester Plaza, PO Box 1482, Elmsford, NY10523-1482 USA Telephone: (914) 592-6050 Facsimile: (914) 592-5148 e-mail: enquiries@e2vtechnologies.us

PERFORMANCE

	Min	Typical	Max	
Peak charge storage (see note 1)	60k	100k	-	e ⁻ /pixel
Peak output voltage (no binning)	-	600	-	mV
Dark signal at 293 K (see notes 2 and 3)	-	250	500	e ⁻ /pixel/s
Dynamic range (see note 4)	-	33 333:1	-	
Charge transfer efficiency (see note 5): parallel serial		99.9999 99.9993	-	% %
Output amplifier responsivity (see note 3)	4.0	6.0	8.0	μV/e ⁻
Readout noise at 253 K (see notes 3 and 6)	-	3.0	4.0	rms e ⁻ /pixel
Maximum readout frequency (see note 7)	-	3.0	-	MHz
Dark signal non-uniformity at 293 K (std. deviation) (see notes 3 and 8)	-	60	125	e ⁻ /pixel/s

Spectral Response (at 253 K)

	Enhanced Process Basic Process					Response		
Wavelength (nm)	Broadband Coated	Midband Coated	UV Coated	Broadband Coated	Midband Coated	Non-uniformity (1σ)		
300	-	-	45	-	-	-	-	%
350	50	25	45	25	15	10	5	%
400	80	50	55	55	40	25	3	%
500	80	85	60	75	85	55	3	%
650	75	85	60	75	85	50	3	%
900	30	30	30	30	30	30	5	%

ELECTRICAL INTERFACE CHARACTERISTICS

Electrode capacitances (measured at mid-clock level)

	Min	Typical	Max	
$I \emptyset / I \emptyset$ interphase and $S \emptyset / S \emptyset$ interphase	-	1.1	-	nF
$I\emptyset/SS$ and $S\emptyset/SS$ per phase:				
phases 1 and 3	-	1.3	-	nF
phase 2	-	2.2	-	nF
$R \emptyset / R \emptyset$ interphase	-	30	-	pF
$R\emptyset/(SS+DG+OD)$ per phase	-	40	-	pF
ØR/SS	-	10	-	pF
Output impedance (at typ. operating condition)	-	300	-	Ω

NOTES

- 1. Signal level at which resolution begins to degrade.
- 2. Measured between 253 and 293 K and V_{SS} +9.5 V. Dark signal at any temperature T (kelvin) may be estimated from: $Q_d/Q_{d0}~=~1.14~\times~10^6 T^3 e^{-9080/T}$

where Q_{d0} is the dark signal at T = 293 K (20 °C).

Note that this is the typical performance and some variation may be seen between devices. Below 230 K, additional dark current components with a weaker temperature dependence may become significant.

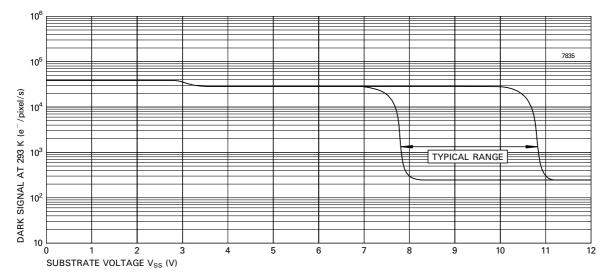
3. Test carried out at e2v technologies on all sensors.

- 4. Dynamic range is the ratio of full-well capacity to readout noise measured at 253 K and 20 kHz readout speed.
- 5. CCD characterisation measurements made using charge generated by X-ray photons of known energy.
- 6. Measured using a dual-slope integrator technique (i.e. correlated double sampling) with a 20 μs integration period.
- 7. Readout at speeds in excess of 3 MHz into a 15 pF load can be achieved but performance to the parameters given cannot be guaranteed.
- 8. Measured between 253 and 293 K, excluding white defects.

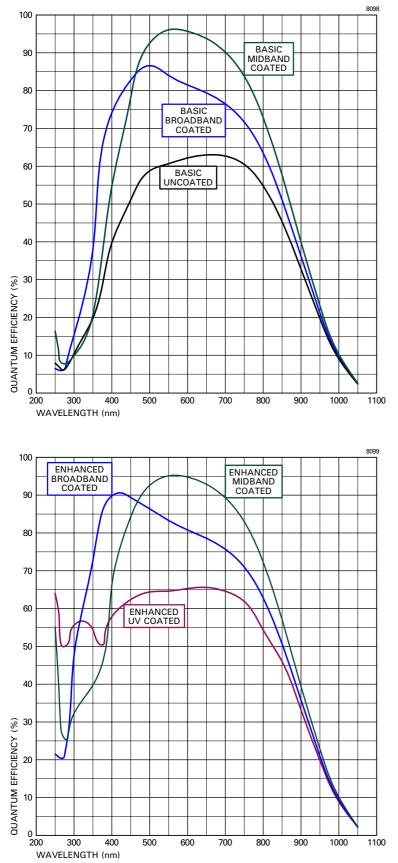
BLEMISH SPECIFICATION

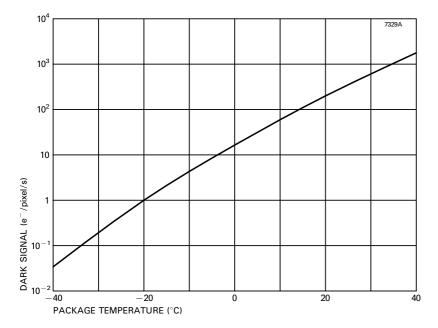
Traps Slipped columns	Pixels where charge is temporarily held. Traps are counted if they have a capacity greater than 200 e ⁻ at 253 K. Are counted if they have an amplitude
Silpped columns	greater than 200 e ⁻ .
Black spots	Are counted when they have a signal level of less than 80% of the local mean at a signal level of approximately half full-well.
White spots	Are counted when they have a generation rate 125 times the specified maximum dark signal generation rate (measured between 253 and 293 K). The typical temperature dependence of white spot defects is different from that of the average dark signal and is given by: $Q_d/Q_{d0} = 122T^3e^{-6400/T}$
White column	A column which contains at least 9 white defects.
Black column	A column which contains at least 9 black defects.

GRADE	0	1	2
Column defects: black or slipped white	0 0	3 0	10 1
Black spots	30	50	200
Traps >200 e ⁻	1	2	5
White spots	20	30	50

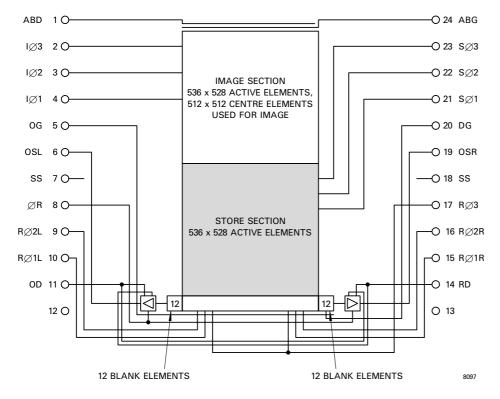

Grade 5 Devices which are fully functioning, with image quality below that of grade 2, and which may not meet all other performance parameters.

Minimum separation between


TYPICAL OUTPUT CIRCUIT NOISE (Measured using clamp and sample)


 $V_{SS} = 9.5 V$ $V_{RD} = 17 V$ $V_{OD} = 29 V$

TYPICAL VARIATION OF DARK SIGNAL WITH SUBSTRATE VOLTAGE



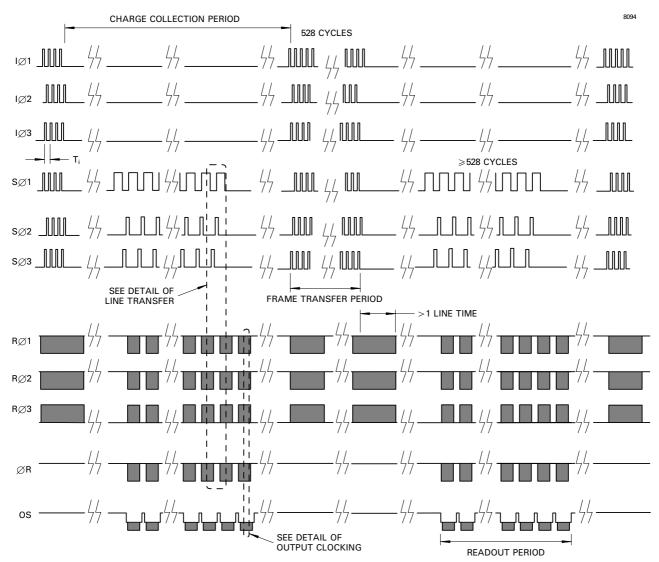
TYPICAL SPECTRAL RESPONSE (At -20 °C, no window)

DEVICE SCHEMATIC

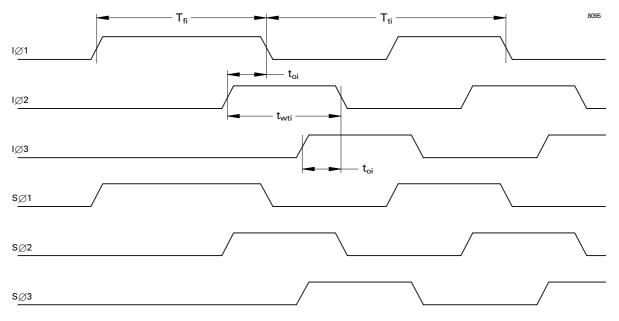
Note Pins 12 and 13 are not connected. For convenience, the CCD57-10 Compact Pack is pin compatible with the CCD47-10 sensors in the compact pack, except that OSL = pin 12, OSR = pin 13 and pins 6 and 19 are not connected in the CCD47-10.

				E AMPLITU /EL (V) (See		MAXIMUM RATINGS
PIN	REF	DESCRIPTION	Min	Typical	Max	with respect to $V_{\rm SS}$
1	ABD	Anti-blooming drain (see note 10)	17	24	V _{OD}	-0.3 to +25 V
2	IØ3	Image area clock	10	12	15	<u>+</u> 20 V
3	IØ2	Image area clock	10	12	15	±20 V
4	IØ1	Image area clock	10	12	15	<u>±</u> 20 V
5	OG	Output gate	1	3	5	<u>+</u> 20 V
6	OSL	Output transistor source (left amplifier)		see note 11		-0.3 to +25 V
7	SS	Substrate	8	9.5	11	-
8	ØR	Output reset pulse (left and right amplifiers)	8	12	15	±20 V
9	RØ2L	Output register clock (left section)	8	10	15	±20 V
10	RØ1L	Output register clock (left section)	8	10	15	±20 V
11	OD	Output transistor drain (left and right amplifiers)	ifiers) 27 29 32		-0.3 to +35 V	
12	-	No connection	_			-
13	-	No connection		-		-
14	RD	Reset transistor drain (left and right amplifiers)	15	18	21	-0.3 to +25 V
15	RØ1R	Output register clock (right section)	8	10	15	<u>+</u> 20 V
16	RØ2R	Output register clock (right section)	8	10	15	<u>±</u> 20 V
17	RØ3	Output register clock (left and right sections)	8	10	15	<u>+</u> 20 V
18	SS	Substrate	8	9.5	11	-
19	OSR	Output transistor source (right amplifier)		see note 11		-0.3 to +25 V
20	DG	Dump gate (see note 12)	-	0	-	±20 V
21	SØ1	Storage area clock	10	12	15	±20 V
22	SØ2	Storage area clock	10	12	15	±20 V
23	SØ3	Storage area clock	10 12 15 ±2			±20 V
24	ABG	Anti-blooming gate	0	0	5	<u>+</u> 20 V

CONNECTIONS, TYPICAL VOLTAGES AND ABSOLUTE MAXIMUM RATINGS

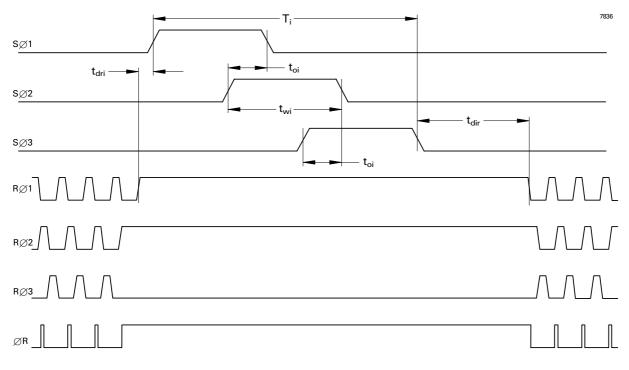

Maximum voltages between pairs of pins:

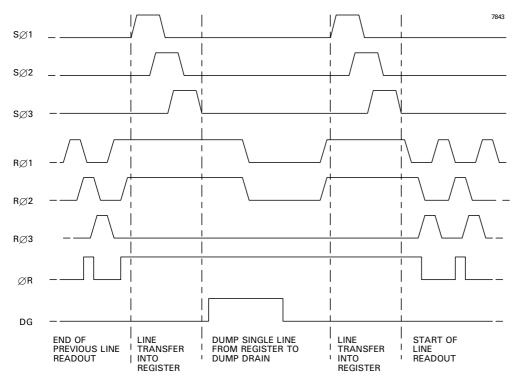
pin 10 (OSL) to pin 11 (ODL)			<u>+</u> 15	V
pin 22 (ODR) to pin 23 (OSR) .			<u>+</u> 15	V
Maximum output transistor current			. 10	mΑ


NOTES

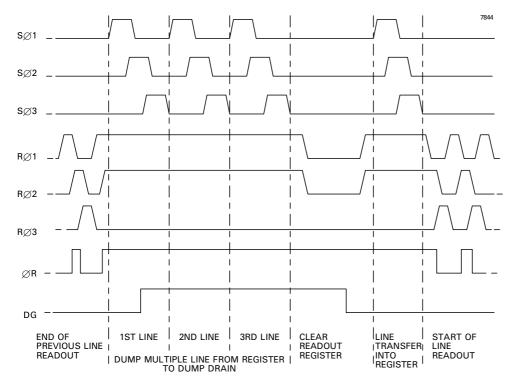
- 9. Readout register clock pulse low levels +1 V; other clock low levels 0 \pm 0.5 V.
- 10. Drain not incorporated, but bias is still necessary.
- 11. 3 to 5 V below OD. Connect to ground using a 3 to 5 mA current source or appropriate load resistor (typically 5 to 10 kΩ).
- 12. Non-charge dumping level shown. For operation in charge dumping mode, DG should be pulsed to 12 \pm 2 V.
- 13. All devices will operate at the typical values given. However, some adjustment within the minimum to maximum range may be required to optimise performance for critical applications. It should be noted that conditions for optimum performance may differ from device to device.
- 14. With the RØ connections shown, the device will operate through the right-hand output only. In order to operate from both outputs RØ1(L) and RØ2(L) should be reversed. Thus for right-hand output, connect pin 9 = pin 16 = RØ2, pin 10 = pin 15 = RØ1, pin 17 = RØ3 (common). For left-hand output, connect pin 9 = pin 16 = RØ1, pin 10 = pin 15 = RØ2. For split output, connect pin 9 = pin 15 = RØ1, pin 10 = pin 16 = RØ2. Use clock sequence RØ1:RØ2:RØ3, as shown in the following timing diagrams.

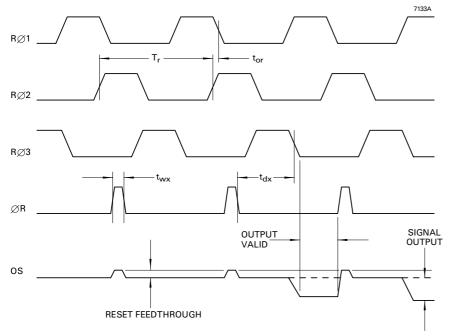
FRAME TRANSFER TIMING DIAGRAM

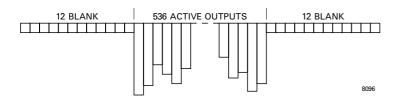




© e2v technologies

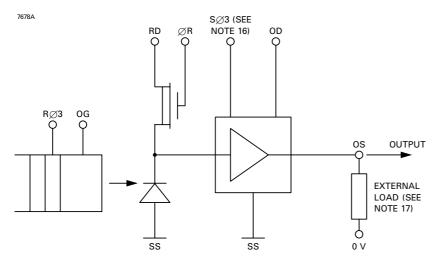

DETAIL OF LINE TRANSFER (For output from a single amplifier)


DETAIL OF VERTICAL LINE TRANSFER (Single line dump)


DETAIL OF VERTICAL LINE TRANSFER (Multiple line dump)

DETAIL OF OUTPUT CLOCKING

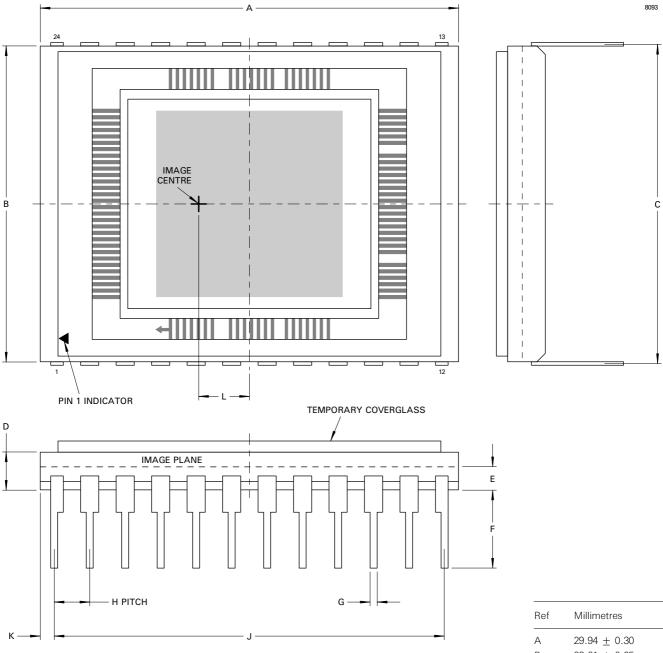
LINE OUTPUT FORMAT


CLOCK TIMING REQUIREMENTS

Symbol	Description	Min	Typical	Max	
T _{fi}	First frame transfer pulse width	100	150	see note 15	μs
T _{ti}	Frame transfer clock period	2	5	see note 15	μs
t _{wti}	Frame transfer image clock pulse width	1	2	$T_{ti}/3 + t_{oi}$	μs
Ti	Store clock period	25	50	see note 15	μs
t _{wi}	Image/store clock pulse width	8	16	see note 15	μs
t _{ri}	Image/store clock pulse rise time (10 to 90%)	0.03	0.1	0.2T _{ti}	μs
t _{fi}	Image/store clock pulse fall time (10 to 90%)	t _{ri}	0.1	0.2T _{ti}	μs
t _{oi}	Image/store clock pulse overlap	0.2	0.3	0.2T _{ti}	μs
t _{dir}	Delay time, SØ stop to RØ start	1	2	see note 15	μs
t _{dri}	Delay time, $R \emptyset$ stop to $S \emptyset$ start	1	1	see note 15	μs
Tr	Output register clock cycle period	200	1000	see note 15	ns
t _{rr}	Clock pulse rise time (10 to 90%)	50	0.1T _r	0.3T _r	ns
t _{fr}	Clock pulse fall time (10 to 90%)	t _{rr}	0.1T _r	0.3T _r	ns
t _{or}	Clock pulse overlap	20	0.5t _{rr}	0.1T _r	ns
t _{wx}	Reset pulse width	30	0.1T _r	0.3T _r	ns
t _{rx} , t _{fx}	Reset pulse rise and fall times	0.2t _{wx}	0.5t _{rr}	0.1T _r	ns
t _{dx}	Delay time, ØR low to RØ3 low	30	0.5T _r	0.8T _r	ns

NOTES

15. No maximum other than that necessary to achieve an acceptable dark signal at the longer readout times.


OUTPUT CIRCUIT

NOTES

- 16. The amplifier has a DC restoration circuit which is internally activated whenever $S\emptyset$ 3 is high.
- 17. Not critical; can be a 3 to 5 mA constant current supply or an appropriate load resistor.

OUTLINE (All dimensions without limits are nominal)

Ref	Millimetres
A	29.94 ± 0.30
В	22.61 ± 0.25
С	22.86 ± 0.25
D	2.70 ± 0.27
E	1.65 <u>+</u> 0.25
F	5.6 <u>+</u> 0.5
G	0.46 ± 0.05
Н	2.54 <u>+</u> 0.13
J	27.94 <u>+</u> 0.13
К	1.0 <u>+</u> 0.3
L	3.6 ± 0.3

ORDERING INFORMATION

Options include:

- Temporary Quartz Window
- Permanent Quartz Window
- Temporary Glass Window
- Permanent Glass Window
- Fibre-optic Coupling
- UV Coating
- X-ray Phosphor Coating

For further information on the performance of these and other options, please contact e2v technologies.

HANDLING CCD SENSORS

CCD sensors, in common with most high performance MOS IC devices, are static sensitive. In certain cases a discharge of static electricity may destroy or irreversibly degrade the device. Accordingly, full antistatic handling precautions should be taken whenever using a CCD sensor or module. These include:

- Working at a fully grounded workbench
- Operator wearing a grounded wrist strap
- All receiving socket pins to be positively grounded
- Unattended CCDs should not be left out of their conducting foam or socket.

Evidence of incorrect handling will invalidate the warranty. All devices are provided with internal protection circuits to the gate electrodes (pins 2, 3, 4, 5, 8, 9, 10, 15, 16, 17, 20, 21, 22, 23, 24) but not to the other pins.

HIGH ENERGY RADIATION

Device parameters may begin to change if subject to an ionising dose of greater than $10^4 \mbox{ rads}.$

Certain characterisation data are held at e2v technologies. Users planning to use CCDs in a high radiation environment are advised to contact e2v technologies.

TEMPERATURE LIMITS

	Min	Typical	Max	
Storage	153	-	373	К
Operating	153	273	323	Κ
Operation or storage in humid conditions may give rise to ice on				
the sensor surface on cooling, causing irreversible damage.				

Maximum device heating/cooling 5 K/min

Whilst e2v technologies has taken care to ensure the accuracy of the information contained herein it accepts no responsibility for the consequences of any use thereof and also reserves the right to change the specification of goods without notice. e2v technologies accepts no liability beyond that set out in its standard conditions of sale in respect of infringement of third party patents arising from the use of tubes or other devices in accordance with information contained herein.