e₂v

e2v technologies

FEATURES

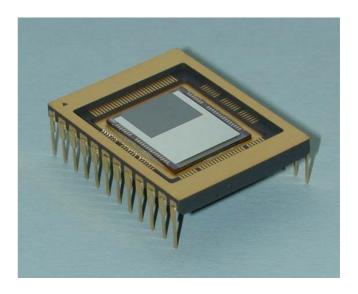
- 256 x 256 Pixel Image Area.
- 26 μm Square Pixels.
- Low Noise, High Responsivity Output Amplifier.
- 100% Active Area.
- Gated Dump Drain on Output Register.

INTRODUCTION

This version of the CCD67 family of CCD sensors is a frame transfer imaging device with a single serial output register.

There are two low noise amplifiers in the readout register, one at each end. Charge can be made to transfer through either or both of the amplifiers by making the appropriate $R\varnothing$ connections. The readout register has a gate controlled dump drain to allow fast dumping of unwanted data.

The register is designed to accommodate 3 image pixels of charge.


The CCD67 is pin compatible with the CCD57 and the centre of the image area of the CCD67 is coincident with that of the CCD57

Other variants of the CCD67 are available for applications with differing requirements. Designers are advised to contact e2v technologies should they be considering the use of CCD sensors in abnormal environments or if they require customised packaging.

TYPICAL PERFORMANCE

Maximum readout frequency				. 5	MHz
Output responsivity				. 1.5	μV/e ⁻
Peak signal				600	ke-/pixel
Spectral range		200	-	1100	nm
Readout noise (1 MHz)				12	e- rms

CCD67 Back Illuminated NIMO High Performance Compact Pack CCD Sensor

GENERAL DATA

Format

Image area pixels								268 (H) x 264 (V)
Active area pixels								256 (H) x 256 (V)
Storage area pixels								268 (H) x 264 (V)
Pixel size								26 x 26 μm
Number of output a	am	plif	iers					2
Number of underso	an	(se	erial) p	ixe	ls		. 6 (each end)

Package

Package size							3	0.0	X	22.6	3 mm
Number of pins .											32
Inter-pin spacing										2.54	4 mm
Window material					te	em	noq	ary	/ C	over	glass
Package type .							cer	ami	ic	DIL	array

PERFORMANCE

	Min	Typical	Max	
Peak charge storage (see note 1)	400k	600k	-	e ⁻ /pixel
Peak output voltage (no binning)	-	0.9	-	V
Dark signal at 293 K (see note 2)	-	40 000	85 000	e ⁻ /pixel/s
Dynamic range (see note 3)	-	150,000:1	-	
Charge transfer efficiency (see note 4): parallel serial	-	99.9999 99.9993		% %
Output amplifier responsivity	1.0	1.5	2.0	μV/e ⁻
Readout noise at 233 K (20 kHz) (see note 5)	-	4.0	6.0	rms e ⁻
Maximum readout frequency (see note 6)	-	-	5	MHz
Maximum vertical transfer frequency	-	-	2	MHz
Photo response non-uniformity (see note 7) (std. deviation)	-	1	3	% of mean
Dark signal non-uniformity (293 K) (see note 8)	-	4000	8000	e ⁻ /pixel/s

NOTES

- 1. Signal level at which resolution begins to degrade.
- 2. Measured between 233 and 253 K and $V_{\rm SS}$ +9.0 V. Dark signal at any temperature T (kelvin) may be estimated from:

$$Q_d/Q_{d0} = 122T^3e^{-6400/T}$$

where Q_{d0} is the dark signal at T = 293 K (20 °C).

- 3. Dynamic range is the ratio of full-well capacity to readout noise measured at 233 K and 20 kHz readout speed.
- 4. CCD characterisation measurements made using charge generated by X-ray photons of known energy.
- 5. Measured using a dual-slope integrator technique (i.e. correlated double sampling) with a 10 μs integration period.
- 6. Readout at speeds in excess of 5 MHz into a 15 pF load can be achieved but performance to the parameters given cannot be guaranteed.
- 7. This is not quoted for the fibre-optic variant as it is affected by the fibre-optic.
- 8. Measured between 233 and 253 K, excluding white defects.

BLEMISH SPECIFICATION

Traps Pixels where charge is temporarily held.

Traps are counted if they have a capacity

greater than 200 e⁻ at 233 K.

Slipped columns Are counted if they have an amplitude

greater than 200 e⁻.

Black spots Are counted when they have a signal level of less than 90% of the local mean

at a signal level of approximately half full-

well.

White spots

Are counted when they have a generation rate 10 times the specified maximum dark signal generation rate (measured between 233 and 253 K). The amplitude of white spots will vary in the same manner as dark current, i.e.:

 $Q_d/Q_{d0} = 122T^3e^{-6400/T}$

White column A column which contains at least 9 white

defects.

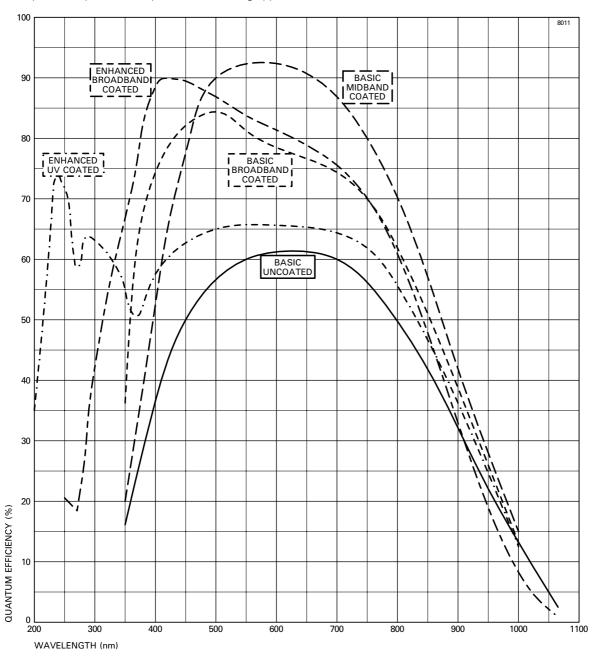
Black column A column which contains at least 9 black

defects.

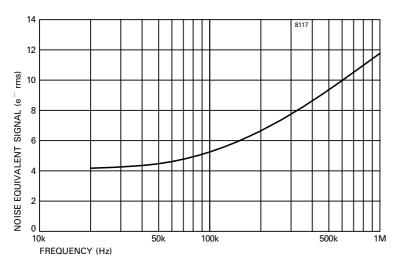
GRADE	0	1	2
Column defects: black or slipped white	0	1 0	4 0
Black spots	5	10	20
Traps > 200 e ⁻	1	2	5
White spots	5	10	15

Grade 5

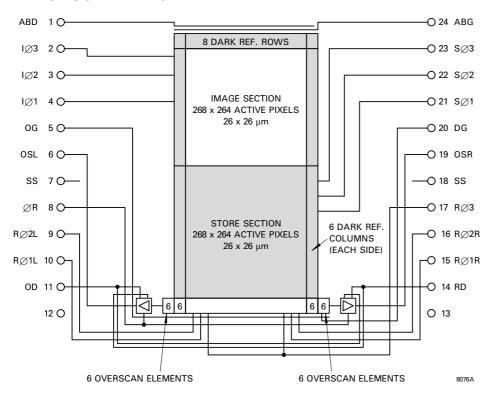
Devices which are fully functioning, with image quality below that of grade 2, and which may not meet all other performance parameters.


Minimum separation between

adjacent black columns 50 pixels


Note The effect of temperature on defects is that traps will be observed less at higher temperatures but more may appear below 233 K. The amplitude of white spots and columns will decrease rapidly with temperature.

TYPICAL SPECTRAL RESPONSE

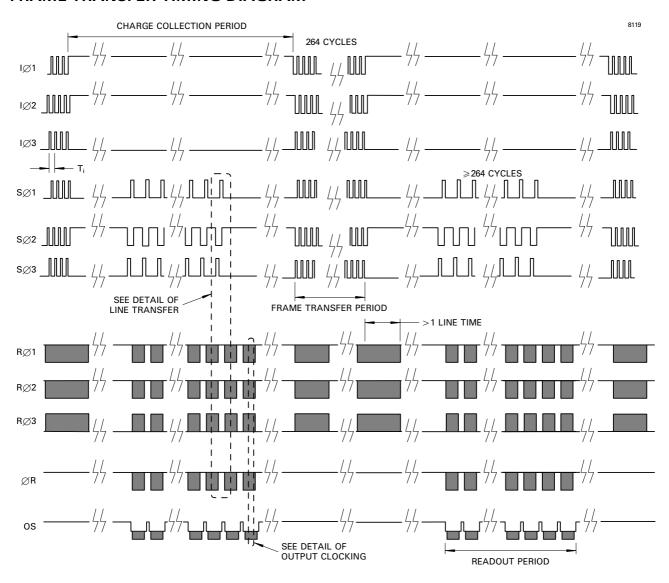

The spectral response will depend on the cooling applied to the device.

TYPICAL OUTPUT NOISE

DEVICE SCHEMATIC

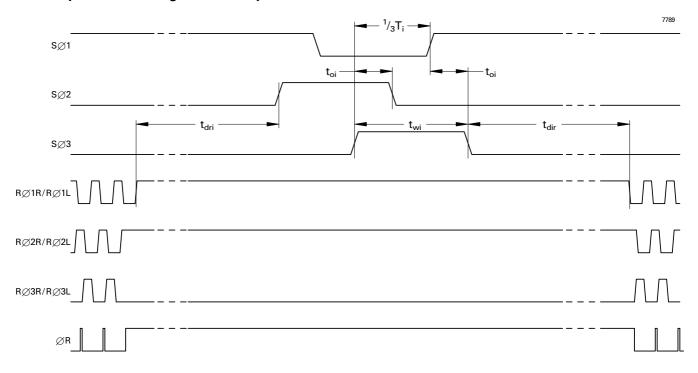
CONNECTIONS, TYPICAL VOLTAGES AND ABSOLUTE MAXIMUM RATINGS

					CLOCK HIG	MAXIMUM RATINGS	
PIN	REF	DESCRIPTION	(V typ.)	Min	Typical	Max	w.r.t. V _{ss}
1	ABD	Anti-blooming drain (see note 9)	n/a		V_{OD}		-0.3 to +25 V
2	IØ3	Image area clock, phase 3	0	8	12	15	<u>+</u> 20 V
3	IØ2	Image area clock, phase 2	0	8	12	15	<u>+</u> 20 V
4	IØ1	Image area clock, phase 1	0	8	12	15	<u>+</u> 20 V
5	OG	Output gate	n/a	1	3	5	±20 V
6	OSL	Output transistor source (left amplifier)	n/a		see note 10)	-0.3 to +25 V
7	SS	Substrate	n/a	0	9	10	-
8	ØR	Reset pulse	0	8	12	15	<u>±</u> 20 V
9	RØ2L	Register clock, phase 2 (left section)	-2	8	10	15	±20 V
10	RØ1L	Register clock, phase 1 (left section)	-2	8	10	15	<u>±</u> 20 V
11	OD	Output drain	n/a	27	29	31	-0.3 to +25 V
12	-	No connection	n/a		-		-
13	ı	No connection	n/a		-		-
14	RD	Reset drain	n/a	15	17	19	-0.3 to +25 V
15	RØ1R	Register clock, phase 1 (right section)	-2	8	10	15	<u>+</u> 20 V
16	RØ2R	Register clock, phase 2 (right section)	-2	8	10	15	<u>+</u> 20 V
17	RØ3	Register clock, phase 3	-2	8	10	15	<u>+</u> 20 V
18	SS	Substrate	n/a	0	9	10	-
19	OSR	Output transistor source (right amplifier)	n/a		see note 10)	-0.3 to +25 V
20	DG	Dump gate (see note 11)	0	10	12	14	<u>±</u> 20 V
21	SØ1	Storage clock, phase 1	0	8	12	15	<u>+</u> 20 V
22	SØ2	Storage clock, phase 2	0	8	12	15	<u>+</u> 20 V
23	SØ3	Storage clock, phase 3	0	8	12	15	<u>+</u> 20 V
24	ABG	Anti-blooming gate (see note 9)	n/a	0	3	5	<u>±</u> 20 V

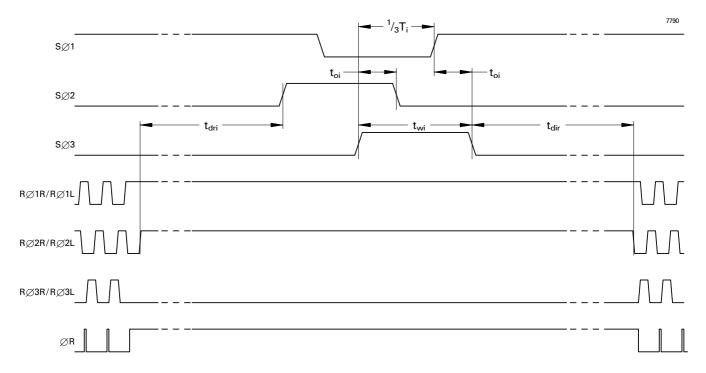

NOTES

^{9.} Although anti-blooming is not incorporated, bias is still necessary.

^{10. 3} to 5 V below OD. Connect to ground using a 2 to 5 mA current source or appropriate load resistor (typically 5 to 10 k Ω).

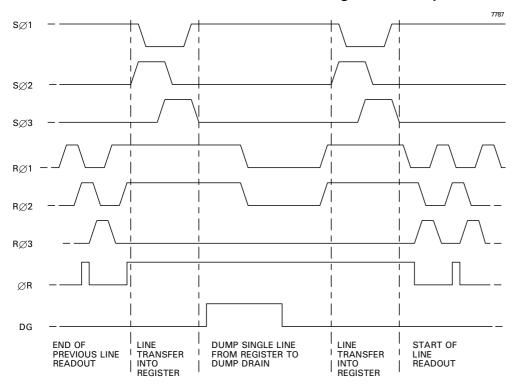

^{11.} This gate is normally low. It should be pulsed high for charge dump.

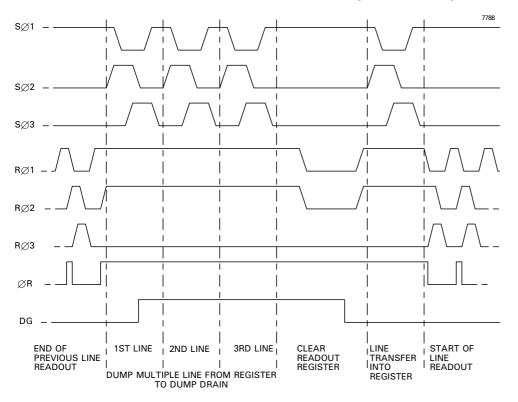
FRAME TRANSFER TIMING DIAGRAM


DETAIL OF LINE TRANSFER

(For output from the right-hand amplifier)

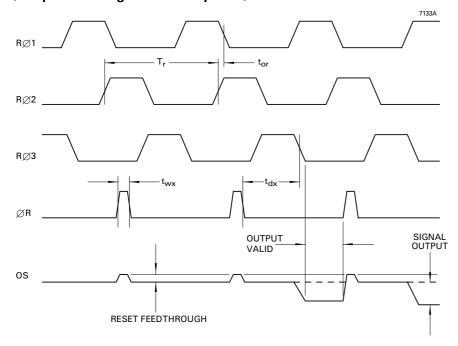
DETAIL OF LINE TRANSFER


(For output from the left-hand amplifier)

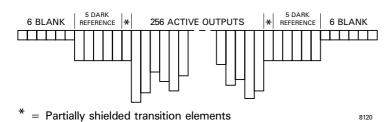

NOTE

12. For operation from either left- or right-hand only, use the appropriate waveforms applied to all six output register clocks. For operation from both outputs simultaneously, apply the corresponding waveforms to each set of output register clocks independently.

DETAIL OF VERTICAL LINE TRANSFER (Single line dump)



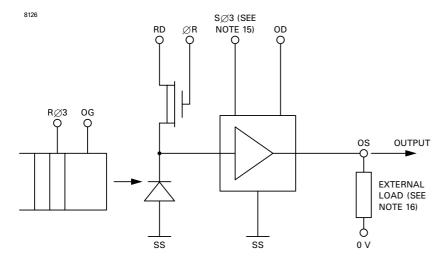
DETAIL OF VERTICAL LINE TRANSFER (Multiple line dump)



DETAIL OF OUTPUT CLOCKING

(Output from right-hand amplifier)

LINE OUTPUT FORMAT

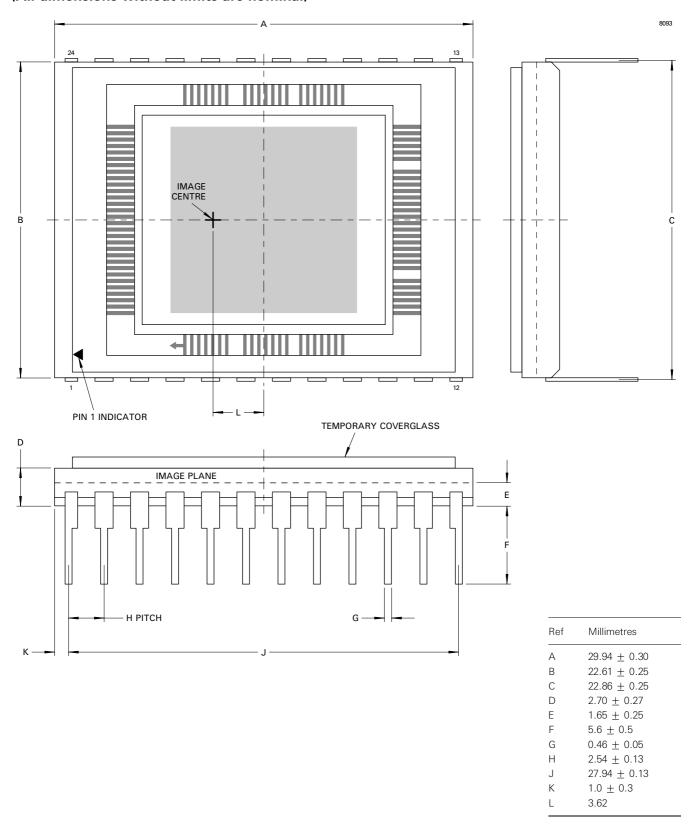

CLOCK TIMING REQUIREMENTS

Symbol	Description	Min	Typical	Max	
T _i	Image clock period	0.5	1	see note 13	μs
t _{wi}	Image clock pulse width	0.25	0.5	see note 13	μs
t _{ri}	Image clock pulse rise time (10 to 90%)	0.03	0.1	0.2T _i	μs
t _{fi}	Image clock pulse fall time (10 to 90%)	t _{ri}	0.1	0.2T _i	μs
t _{oi}	Image clock pulse overlap	$(t_{ri} + t_{fi})/2$	0.1	0.2T _i	μs
t _{dir}	Delay time, S∅ stop to R∅ start	1	2	see note 13	μs
t _{dri}	Delay time, R∅ stop to S∅ start	1	1	see note 13	μs
T _r	Output register clock cycle period	125	500	see note 13	ns
t _{rr}	Clock pulse rise time (10 to 90%)	50	0.1T _r	0.3T _r	ns
t _{fr}	Clock pulse fall time (10 to 90%)	t _{rr}	0.1T _r	0.3T _r	ns
t _{or}	Clock pulse overlap	20	0.5t _{rr}	0.1T _r	ns
t _{wx}	Reset pulse width	30	0.1T _r	0.3T _r	ns
t _{rx} , t _{fx}	Reset pulse rise and fall times	0.2t _{wx}	0.5t _{rr}	0.1T _r	ns
t _{dx}	Delay time, ØR low to RØ3 low	30	0.5T _r	0.8T _r	ns

NOTES

- 13. No maximum other than that necessary to achieve an acceptable dark signal at the longer readout times.
- 14. To minimise dark current, two of the $I\emptyset$ clocks should be held low during integration. $I\emptyset$ timing requirements are identical to $S\emptyset$ (as shown above).

OUTPUT CIRCUIT (Right-hand amplifier)



NOTES

- 15. The amplifier has a DC restoration circuit which is internally activated whenever SØ3 is high.
- 16. Not critical; can be a 2 to 5 mA constant current supply or an appropriate load resistor.

OUTLINE

(All dimensions without limits are nominal)

Whilst e2v technologies has taken care to ensure the accuracy of the information contained herein it accepts no responsibility for the consequences of any use thereof and also reserves the right to change the specification of goods without notice. e2v technologies accepts no liability beyond that set out in its standard conditions of sale in respect of infringement of third party patents arising from the use of tubes or other devices in accordance with information contained herein.